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Plan

Models for water waves in shallow water

Part I. Dispersion-improved model:

Improved Serre—Green—Naghdi equations.

Part Il. Dispersionless model:

Regularised Saint-Venant-Airy equations.
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Motivation

Understanding water waves (in shallow water).

Analytical approximations:
¢ Qualitative description;
e Physical insights.

Simplified equations:
e Easier numerical resolution;
e Faster schemes.

Goal:
e Derivation of the most accurate simplest models.

DIDIER CLAMOND (LJAD) Improved shallow water models ICERM, April 2017 4/40



Hypothesis

Physical assumptions:

e Fluid is ideal, homogeneous &
incompressible;

e Flow is irrotational, i.e.,
V = grad ¢;
o Free surface is a graph;

e Atmospheric pressure is
constant.

Surface tension could also be
included.

DIDIER CLAMOND (LJAD) Improved shallow water models ICERM, April 2017 5/40



Notations for 2D surface waves over a flat bottom

e x : Horizontal coordinate.

e y : Upward vertical coordinate.
: Time.

e u : Horizontal velocity.

[ ]
~

e v : Vertical velocity.

e ¢ : Velocity potential.

e y=n(x,t) : Equation of the free surface.

e y = —d : Equation of the seabed.

e Over tildes : Quantities at the surface, e.g., # = u(y = n).

e Over check : Quantities at the surface, e.g., it = u(y = —d).
e Over bar : Quantities averaged over the depth, e.g.,

1 [
u = / u dy, h =n+d.
hJ_a
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Mathematical formulation

e Continuity and irrotationality equations for —d <y <17
Uy = —Vy, Vx=1Uy, = ¢ + ¢ =0
e Bottom’s impermeability condition at y = —d
v=20
e Free surface’s impermeability condition at y = n(x, )
o+ une =V
e Dynamic free surface condition at y = n(x, 1)

o+ 2+ AV +gn =0
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Shallow water scaling

Assumptions for large long waves in shallow water:

h
o depth (shallowness parameter),
wavelength
W = O(0”) (steepness parameter).

Scale of derivatives and dependent variables:

{0v; 0/} = (’)(01), 0y = (’)(UO),
{u;v;n} = (’)(00), ¢ = (’)(071).
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Solution of the Laplace equation and bottom
impermeability

Taylor expansion around the bottom (Lagrange 1791):

u = cos[(y+d)0ou

= u- %(y"‘d)z’:‘xx + %(y+d)4ﬁxxxx + o

Low-order approximations for long waves:

u=1u+ Oc?), (horizontal velocity)
v=—(+dua + O(), (vertical velocity).
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Energies

Kinetic energy:

M oy? 4?2 hi? a2
= dy = — = O(s*
/d a = 0 T oY),

Potential energy:

n h2
YV = / gly+d)dy = gT
—d

Lagrangian density (Hamilton principle):

= — Vv + {hz+[hﬁ]x}¢
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Approximate Lagrangian

G = sht — gl + {h + [} 6 + O(0?).
= Saint-Venant (non-dispersive) equations.

Ly = b + thPal + O(d).
= Serre (dispersive) equations.

Lo = L — ghul + O(0°).

= Extended Serre (ill-posed) equations.

DIDIER CLAMOND (LJAD) Improved shallow water models ICERM, April 2017 11/40



Serre equations derived from %

Euler—Lagrange equations yield:
0 = h + Ofhu],
0 = 0fu— Jn'(ru)]
+ O[3 + gh — frPal — tan'(Way),].

Secondary equations:
i + iity + ghe + $h7' 0 [ R y] = 0,
Olhu] + O hw* + Sgh® + §h*~] = 0,
O[Lna + tral + Lgn*] +
Ol (3@ + th*al+ gh + thy)ha| = 0,

with
v = h[d] — iy — Gl ] -
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2D Serre’s equations on flat bottom (summary)
Easy derivations via a variational principle.

Non-canonical Hamiltonian structure.
(Li, J. Nonlinear Math. Phys., 2002)

Multi-symplectic structure.
(Chhay, Dutykh & Clamond, J. Phys. A, 2016)

Fully nonlinear, weakly dispersive.
(Wu, Adv. App. Mech. 37, 2001)

Can the dispersion be improved?
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Modified vertical acceleration
v = 2ha? — ho [ + ui] + O(o?).

Horizontal momentum:
i + aiy = —ghy — Yh7'O[R*y] + O().
%/—/ R/—/ N— —

O() O() O(a3)

Alternative vertical acceleration at the free surface:

v = 2ha? 4+ ghhy + O(0%).

Generalised vertical acceleration at the free surface:

v = 2hia? 4+ Bghhy + (B—1) ko], + ai,] + O(c?).

g: free parameter.
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Modified Lagrangian
Substitute iz = v + h(ity + wiy,):

ha* Wy K gh?
34274‘?4‘5[%;4‘141@])6—

> + {h +[hu], }o.

Substitution of the generalised acceleration:

v = 2hul + Bghhyw + (B—1)ho|a + au,] + O(c*).

Resulting Lagrangian:

h3
L= 4 + Bl—z[ﬁ, + aiy + ghyl, + O(c%).

O(c*)
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Reduced modified Lagrangian

After integrations by parts and neglecting boundary terms:

Pl Lb_ﬁ + (2+35)h3ﬁx2 . ﬁ B thzhxz
4 2 12 2 4

+ {h +[hul, }o

= %, + boundary terms.
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Equations of motion

hy + Ox[hit] =
g + Ocfug — Su* +gh — (3 +3p) Wul — 1Bg(WPhy + hh})| =
u, + uiy + ghy + ]h 10, [hzr]
Oi[hit] + Oy [hit® + Lgh* + 1n’T] =
O, [Lhi® + (L + 1p)Wa2 + Leh® + 1 5gh?n?] +
Oc[(3 + (L + LB)Wu? + gh+ LBghh? + LhT) hia + 1 Bgh’hyit] = 0,

I
9

I

0
0
0
0

9

where

Il

oo == (3+38) 07" ],

q
T (1 + %ﬁ) h [fixz — Uy — ﬁaxx] T %Bg [hhxx + %hxz] :
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Linearised equations

With h = d + n, n and u small, the equations become

77[ + dﬁx — O,
i — (34 38) iy + gne — $88d* e = 0.

Dispersion relation:
2

& 24 Bk (kd)? 1 B\ (kd)*
gd_2+(%+ﬁ)(kd)2N1 3 +< > '

Exact linear dispersion relation:

¢ _tanh(kd) (kP 2(ka)*

gd ~ kd 3 15
g =2/15 is the best choice.
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Steady solitary waves

Equation:

<dn>2_ (F )(/) (n/d)’
dx (3+38)F — 181 +n/d)?

F = cz/gd

Solution in parametric form:

77(;) = (F-1) sechz(”;>, (kd)? =

“9“A€
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Comparisons for 5 =0 and g =2/15
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Random wave field
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Random wave field (zoom)

DIDIER CLAMOND (LJAD) Improved shallow water models ICERM, April 2017 22 /40



Part |l
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Saint-Venant equations

Non-dispersive shallow water (Saint-Venant) equations:

he + [hu], = 0,
i, + wiy + ghy = 0.

Shortcomings:

— No permanent regular solutions;
— Shocks appear;
— Requires ad hoc numerical schemes.
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Regularisations
Add diffusion (e.g. von Neumann & Richtmayer 1950):
U + Uiy + ghy = Vil
= Leads to dissipation of energy = bad for long time simulation.
Add dispersion (e.g. Lax & Levermore 1983):
U + uily + ghy = Tl

= Leads to spurious oscillations. Not always sufficient for
regularisation.

Add diffusion + dispersion (e.g. Hayes & LeFloch 2000):

= Regularises but does not conserve energy and provides
spurious oscillations.
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Leray-like regularisation

Bhat & Fetecau 2009 (J. Math. Anal. & App. 358):

h[ + [h«ﬁ]x = 62hﬁxx/h
U + uly + ghx = fz(ﬁxxt+ﬁﬁxxx)'
Drawbacks:

— Shocks do not propagate at the right speed;
— No equation for energy conservation.
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Dispersionless model

Two-parameter Lagrangian:

& =tni + (L+1p)RPul — Leh? (1+16:n2)
+{h +1[h }

Linear dispersion relation:
2 24 Bo(kd)?

gd 2+ (3+5) (ka)?

No dispersion if c = v/gd, thatis 3, = 3, — 2/3, so let be
B = 2e — 2/3, By = 2e.
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Conservative regularised SV equations

Regularised Saint-Venant equations:

0 = Olh a] - 8[hﬁ2+ 1gh* + eRM],
RE h(al — ity — i) — g(hhw + 102).

Energy equation:

O[ihid + Lgh® + Len’u? + Legh®h?)
+O[{ 37 + gh+ yeh’ W + jeghhl + ehR}hu
+egh’heiiy] = 0.
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Permanent solutions

Non-dispersive solitary wave:

1O _ (r 1yt

(hd)? = ¢,
F=1+a/d
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Example: Dam break problem

Initial condition:

ho(x) = h + % (he — hy) (1 + tanh(éx)),
io(x) = w + % (ur — ) (1 + tanh(dx)).

Resolution of the classical shallow water equations with
finite volumes.

Resolution of the regularised equations with
pseudo-spectral scheme.
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Result with e = 0.001 at r/g/d = 0

0.5 i

n(z,t)/d

1
-25 -125 125 25

0
z/d
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Result with e =

0.001 at r+/g/d =5

sV
05 — — - NSWE|]

3
= 025

ol

Il Il Il
-25 -125 0 125 25
z/d
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Result with e =

0.001 at ry/g/d = 10

0.5

0.25 -

n(,t)/d

sV ||
— — —NSWE

-25
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Result with

= 0.001 at r+/g/d = 15
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Result with

0.5

1 at tv/g/d = 15
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Result with

0.5 =

5 at t\/g/d =15

0.25

n(,t)/d

-25
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Example 2: Shock (e = 0.1)

Numerical solution of the SVr system at t = 5.00
T \ T

0.5

—1SV

W == =NSWE| |

o

N

(3]
T

n(x,t)/d

-50 -25 0 25 50
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Rankine—Hugoniot conditions

Assuming discontinuities in second (or higher) derivatives:

(u—3)[ho] + hux] = 0,
(u—3)[uw] + glha] = 0,

= $(1) = u(x,1) £ \/gh(x,1) at x = s(r).
The regularised shock speed is independent of € and the

it propagates exactly along the characteristic lines of
the Saint-Venant equations!
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Summary

Variational principle yields:
— Easy derivations;

— Structure preservation;
— Suitable for enhancing models in a “robust way”.

Straightforward generalisations:

— 3D;
— Variable bottom;
— Stratification.
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